NumPy CheatSheet for Developers
Introduction-What-is-NumPy?
A library consisting of multidimensional array objects and a collection of routines for processing those arrays.
Key and Imports
We use following shorthand in the cheat sheet:
Command | Description |
---|---|
np | import numpy library |
np.array | The array object in NumPy |
np.array.shape | The shape of an array is the number of elements in each dimension. |
np.array.reshape | Reshaping means changing the shape of an array(Example 1-D to 2-D) |
np.zeros(3) | 1D array of length 3 all zeros |
np.zeros((2,3)) | 2D array of all zeros |
np.zeros((3,2,4)) | 3D array of all zeros |
np.full((3,4),2) | 3x4 array with all values 2 |
np.random.rand(3,5) | 3x5 array of random floats between 0 and 1 |
np.ones((3,4)) | 3x4 array with all values 1 |
np.eye(4) | 4x4 array of 0 with 1 on diagonal |
Data Types In NumPy
NumPy has some extra data types, and refer to data types with one character, like i for integers, u for unsigned integers etc.
Below is a list of all data types in NumPy and the characters used to represent them.
Command | Description |
---|---|
i | integer |
b | boolean |
u | unsigned integer |
f | float |
c | complex float |
m | timedelta |
M | datetime |
O | object |
S | string |
U | unicode string |
V | fixed chunk of memory for other type ( void ) |
Save And Load Data
Text/CSV files:
Command | Description |
---|---|
np.loadtxt('New_file.txt') | From a text file |
np.genfromtxt('New_file.csv',delimiter=',') | From a CSV file |
np.savetxt('New_file.txt',arr,delimiter=' ') | Writes to a text file |
np.savetxt('New_file.csv',arr,delimiter=',') | Writes to a CSV file |
Properties:
Command | Description |
---|---|
array.size | Returns number of elements in array |
array.shape | Returns dimensions of array(rows,columns) |
array.dtype | Returns type of elements in array |
Operations
Keywords | Description | Action |
---|---|---|
np.copy(array) | Copies array to new memory array. | Copying |
view(dtype) | Creates view of array elements with type dtype | Copying |
array.sort() | Sorts array | Sorting |
array.sort(axis=0) | Sorts specific axis of array | Sorting |
array.reshape(2,3) | Reshapes array to 2 rows, 3 columns without changing data. | Sorting |
np.append(array,values) | Appends values to end of array | Adding |
np.insert(array,4,values) | Inserts values into array before index 4 | Adding |
np.delete(array,2,axis=0) | Deletes row on index 2 of array | Removing |
np.delete(array,3,axis=1) | Deletes column on index 3 of array | Removing |
np.concatenate((array1,array2),axis=0) | Adds array2 as rows to the end of array1 | Combining |
np.concatenate((array1,array2),axis=1) | Adds array2 as columns to end of array1 | Combining |
np.split(array,3) | Splits array into 3 sub | arrays |
a[0]=5 | Assigns array element on index 0 the value 5 | Indexing |
a[2,3]=1 | Assigns array element on index [2][3] the value 1 | Indexing |
a[2] | Returns the element of index 2 in array a. | Subseting |
a[3,5] | Returns the 2D array element on index [3][5] | Subseting |
a[0:4] | Returns the elements at indices 0,1,2,3 | Slicing |
a[0:4,3] | Returns the elements on rows 0,1,2,3 at column 3 | Slicing |
a[:2] | Returns the elements at indices 0,1 | Slicing |
a[:,1] | Returns the elements at index 1 on all rows | Slicing |
Array Mathematics
Operation type | Syntax | Action |
---|---|---|
Addition | np.add(a,b) | Arithmetic Operations |
Subtraction | np.subtract(a,b) | Arithmetic Operations |
Multiplication | np.multiply(a,b) | Arithmetic Operations |
Division | np.divide(a,b) | Arithmetic Operations |
Exponentiation | np.exp(a) | Arithmetic Operations |
Square Root | np.sqrt(b) | Arithmetic Operations |
Element-wise | a==b | Comparison |
Array-wise | np.array_equal(a,b) | Comparison |
Functions
Operation Type | Syntax |
---|---|
Array-wise Sum | a.sum() |
Array-wise min value | a.min() |
Array row max value | a.max(axis=0) |
Mean | a.mean() |
Median | a.median() |