栈与队列
基础知识
栈
灵魂四问:
- C++中stack,queue 是容器么?
- 我们使用的stack,queue是属于那个版本的STL?
- 我们使用的STL中stack,queue是如何实现的?
- stack,queue 提供迭代器来遍历空间么?
栈和队列是STL(C++标准库)里面的两个数据结构,C++标准库是有多个版本的,要知道我们使用的STL是哪个版本,才能知道对应的栈和队列的实现原理。
三个最为普遍的STL版本:
- HP STL 其他版本的C++ STL,一般是以HP STL为蓝本实现出来的,HP STL是C++ STL的第一个实现版本,而且开放源代码。
- P.J.Plauger STL 由P.J.Plauger参照HP STL实现出来的,被Visual C++编译器所采用,不是开源的。
- SGI STL 由Silicon Graphics Computer Systems公司参照HP STL实现,被Linux的C++编译器GCC所采用,SGI STL是开源软件,源码可读性甚高。
栈是以底层容器完成其所有的工作,对外提供统一的接口,底层容器是可插拔的(也就是说我们可以控制使用哪种容器来实现栈的功能)。所以STL中栈往往不被归类为容器,而被归类为container adapter(容器适配器)。
STL 中栈是用什么容器实现的? 栈的底层实现可以是vector,deque,list 都是可以的, 主要就是数组和链表的底层实现。
我们常用的SGI STL,如果没有指定底层实现的话,默认是以deque为缺省情况下栈的底层结构。
deque是一个双向队列,只要封住一段,只开通另一端就可以实现栈的逻辑了。
SGI STL中 队列底层实现缺省情况下一样使用deque实现的。
队列
队列中先进先出的数据结构,同样不允许有遍历行为,不提供迭代器, SGI STL中队列一样是以deque为缺省情况下的底部结构。
STL 队列也不被归类为容器,而被归类为container adapter( 容器适配器)。
双端队列Deque解释
Deque是一个双端队列接口,继承自Queue接口,Deque的实现类是LinkedList、ArrayDeque、LinkedBlockingDeque,其中LinkedList是最常用的。
Deque有三种用途:
- 普通队列(一端进另一端出):
Queue queue = new LinkedList()
或Deque deque = new LinkedList()
- 双端队列(两端都可进出)
Deque deque = new LinkedList()
- 堆栈
Deque deque = new LinkedList()
注意:Java堆栈Stack类已经过时,Java官方推荐使用Deque替代Stack使用。Deque堆栈操作方法:push()、pop()、peek()。
Deque是一个线性collection,支持在两端插入和移除元素。名称 deque 是“double ended queue(双端队列)”的缩写,通常读为“deck”。大多数 Deque 实现对于它们能够包含的元素数没有固定限制,但此接口既支持有容量限制的双端队列,也支持没有固定大小限制的双端队列。
此接口定义在双端队列两端访问元素的方法。提供插入、移除和检查元素的方法。每种方法都存在两种形式:一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(null 或 false,具体取决于操作)。插入操作的后一种形式是专为使用有容量限制的 Deque 实现设计的;在大 多数实现中,插入操作不能失败。
下表总结了上述 12 种方法:
第一个元素 (头部) | 最后一个元素 (尾部) | |||
---|---|---|---|---|
抛出异常 | 特殊值 | 抛出异常 | 特殊值 | |
插入 | addFirst(e) | offerFirst(e) | addLast(e) | offerLast(e) |
删除 | removeFirst() | pollFirst() | removeLast() | pollLast() |
检查 | getFirst() | peekFirst() | getLast() | peekLast() |
Deque接口扩展(继承)了 Queue 接口。在将双端队列用作队列时,将得到 FIFO(先进先出)行为。将元素添加到双端队列的末尾,从双端队列的开头移除元素。从 Queue 接口继承的方法完全等效于 Deque 方法,如下表所示:
Queue方法 | 等效Deque方法 |
---|---|
add(e) | addLast(e) |
offer(e) | offerLast(e) |
remove() | removeFirst() |
poll() | pollFirst() |
element() | getFirst() |
peek() | peekFirst() |
双端队列也可用作 LIFO(后进先出)堆栈。应优先使用此接口而不是遗留 Stack 类。在将双端队列用作堆栈时,元素被推入双端队列的开头并从双端队列开头弹出。堆栈方法完全等效于 Deque 方法,如下表所示:
堆栈方法 | 等效Deque方法 |
---|---|
push(e) | addFirst(e) |
pop() | removeFirst() |
peek() | peekFirst() |
优先级队列
其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。
而且优先级队列内部元素是自动依照元素的权值排列。那么它是如何有序排列的呢?
缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
什么是堆呢?
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
所以大家经常说的大顶堆(堆头是最大元素),小顶堆(堆头是最小元素),如果懒得自己实现的话,就直接用priority_queue(优先级队列)就可以了,底层实现都是一样的,从小到大排就是小顶堆,从大到小排就是大顶堆。
232.用栈实现队列
使用栈实现队列的下列操作:
push(x) -- 将一个元素放入队列的尾部。 pop() -- 从队列首部移除元素。 peek() -- 返回队列首部的元素。 empty() -- 返回队列是否为空。
解答:
class MyQueue {
Stack<Integer> stackIn;
Stack<Integer> stackOut;
public MyQueue() {
stackIn = new Stack<>();
stackOut = new Stack<>();
}
public void push(int x) {
stackIn.push(x);
}
public int pop() {
dumpstackIn();
return stackOut.pop();
}
public int peek() {
dumpstackIn();
return stackOut.peek();
}
public boolean empty() {
return stackIn.isEmpty() && stackOut.isEmpty();
}
private void dumpstackIn(){
if(!stackOut.isEmpty()) return;
while(!stackIn.isEmpty()){
stackOut.push(stackIn.pop());
}
}
}
225. 用队列实现栈
使用队列实现栈的下列操作:
- push(x) -- 元素 x 入栈
- pop() -- 移除栈顶元素
- top() -- 获取栈顶元素
- empty() -- 返回栈是否为空
注意:
- 你只能使用队列的基本操作-- 也就是 push to back, peek/pop from front, size, 和 is empty 这些操作是合法的。
- 你所使用的语言也许不支持队列。 你可以使用 list 或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
- 你可以假设所有操作都是有效的(例如, 对一个空的栈不会调用 pop 或者 top 操作)。
解答:
//两个 Queue 实现
class MyStack {
Queue<Integer> queue1; // 和栈中保持一样元素的队列
Queue<Integer> queue2; // 辅助队列
public MyStack() {
queue1 = new LinkedList<>();
queue2 = new LinkedList<>();
}
public void push(int x) {
queue2.offer(x);
while(!queue1.isEmpty()){
queue2.offer(queue1.poll());
}
Queue<Integer> queue_temp;
queue_temp = queue1;
queue1 = queue2;
queue2 = queue_temp;
}
public int pop() {
return queue1.poll();
}
public int top() {
return queue1.peek();
}
public boolean empty() {
return queue1.isEmpty();
}
}
// 优化,使用一个 Queue 实现
class MyStack {
Queue<Integer> queue;
public MyStack() {
queue = new LinkedList<>();
}
////每 offer 一个数(A)进来,都重新排列,把这个数(A)放到队列的队首
public void push(int x) {
queue.offer(x);
int size = queue.size();
while(size-- > 1){
queue.offer(queue.poll());
}
}
public int pop() {
return queue.poll();
}
public int top() {
return queue.peek();
}
public boolean empty() {
return queue.isEmpty();
}
}
20. 有效的括号
给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 注意空字符串可被认为是有效字符串。
示例 1:
- 输入: "()"
- 输出: true
示例 2:
- 输入: "()[]{}"
- 输出: true
示例 3:
- 输入: "(]"
- 输出: false
示例 4:
- 输入: "([)]"
- 输出: false
示例 5:
- 输入: "{[]}"
- 输出: true
解答:
class Solution {
public boolean isValid(String s) {
Deque<Character> deque= new LinkedList<>();
char[] ss = s.toCharArray();
int len = ss.length;
if(len%2 == 1) return false;
for(char c : ss){
if(c == '('){
deque.push(')');
} else if(c == '['){
deque.push(']');
} else if(c == '{'){
deque.push('}');
} else{
if(deque.isEmpty() || c != deque.pop()) return false;
}
}
return deque.isEmpty();
}
}
1047. 删除字符串中的所有相邻重复项
给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
- 输入:"abbaca"
- 输出:"ca"
- 解释:例如,在 "abbaca" 中,我们可以删除 "bb" 由 于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
提示:
- 1 <= S.length <= 20000
- S 仅由小写英文字母组成。
解答:
class Solution {
public String removeDuplicates(String s) {
Deque<Character> deque = new LinkedList<>();
char[] ss = s.toCharArray();
for(char c : ss){
if(!deque.isEmpty()){
if(deque.peek() == c){
deque.pop();
continue;
}
}
deque.push(c);
}
char[] res = new char[deque.size()];
for(int i = 0; i < res.length; i++){
res[i] = deque.pollLast();
}
return new String(res);
}
}